Découvre comment les filtres de Kalman optimisent l'estimation de l'état dans l'IA, le suivi, la fusion de capteurs, la robotique et plus encore, même avec des données bruitées.
Le filtre de Kalman (KF) est un algorithme puissant et largement utilisé dans l'apprentissage automatique (ML) et dans divers domaines de l'ingénierie pour estimer l'état d'un système dynamique à partir d'une série de mesures bruyantes et incomplètes au fil du temps. Imagine que tu essaies de repérer l'emplacement et la vitesse exacts d'un drone en utilisant des relevés GPS légèrement imprécis ; le filtre de Kalman fournit un moyen statistiquement optimal de combiner le mouvement prédit avec les mesures bruyantes pour obtenir la meilleure estimation possible. Il est particulièrement apprécié pour son efficacité dans les applications en temps réel.
Les filtres de Kalman sont indispensables dans de nombreuses applications d'IA et de ML :
Le filtre de Kalman standard suppose que la dynamique du système et les modèles de mesure sont linéaires. Cependant, de nombreux systèmes du monde réel ne sont pas linéaires. Dans ce cas, on utilise des variantes comme le filtre de Kalman étendu (EKF). Le filtre de Kalman étendu approxime le système non linéaire en le linéarisant autour de l'estimation de l'état actuel à chaque pas de temps. Bien que puissante, cette linéarisation introduit des erreurs d'approximation, ce qui signifie que l'EKF peut ne pas être aussi optimal ou stable que le KF standard pour les problèmes purement linéaires. D'autres variantes, comme le filtre de Kalman non centré (UKF), offrent des approches différentes pour gérer les non-linéarités.
Les principes du filtrage de Kalman sont incorporés dans les algorithmes de suivi pris en charge par Ultralytics, tels que BoT-SORT et ByteTrack, qui peuvent être utilisés avec les détecteurs d'objetsYOLO d'Ultralytics . Le cadre Ultralytics fournit des implémentations, comme celle que l'on trouve dans reference/trackers/utils/kalman_filter/
pour permettre une suivi des objets capacités. Tu peux gérer et former des modèles pour ces applications à l'aide d'outils tels que Ultralytics HUB.
Comment fonctionnent les filtres de Kalman
À la base, le filtre de Kalman fonctionne de manière récursive sur des flux de données d'entrée bruyantes pour produire une estimation statistiquement optimale de l'état du système sous-jacent. Il fonctionne selon un cycle en deux étapes :
Ce cycle de prédiction et de mise à jour se répète pour chaque nouvelle mesure, ce qui permet d'affiner continuellement l'estimation de l'état. Le filtre est considéré comme "optimal" pour les systèmes linéaires avec un bruit gaussien parce qu'il minimise l'erreur quadratique moyenne de l'estimation de l'état. Cela en fait un outil fondamental dans l'estimation de l'état et le traitement des signaux. Pour une explication plus visuelle, voir Comment fonctionne un filtre de Kalman, en images.