Descobre como os filtros de Kalman optimizam a estimativa de estado em IA, localização, fusão de sensores, robótica e muito mais, mesmo com dados ruidosos.
O Filtro de Kalman (KF) é um algoritmo poderoso e amplamente utilizado no aprendizado de máquina (ML) e em vários campos da engenharia para estimar o estado de um sistema dinâmico a partir de uma série de medições ruidosas e incompletas ao longo do tempo. Imagina tentar identificar a localização exacta e a velocidade de um drone utilizando leituras de GPS ligeiramente imprecisas; o Filtro de Kalman fornece uma forma estatisticamente óptima de combinar o movimento previsto com as medições ruidosas para obter a melhor estimativa possível. É particularmente valorizado pela sua eficiência e eficácia em aplicações em tempo real.
Na sua essência, o Filtro de Kalman opera recursivamente em fluxos de dados de entrada ruidosos para produzir uma estimativa estatisticamente óptima do estado do sistema subjacente. Trabalha num ciclo de duas etapas:
Este ciclo de previsão-atualização repete-se para cada nova medição, refinando continuamente a estimativa do estado. O filtro é considerado "ótimo" para sistemas lineares com ruído gaussiano porque minimiza o erro quadrático médio da estimativa do estado. Isso faz dele uma ferramenta fundamental na estimativa de estado e no processamento de sinais. Para uma explicação mais visual, vê Como funciona um filtro de Kalman, em imagens.
Os filtros de Kalman são indispensáveis em inúmeras aplicações de IA e ML:
O filtro de Kalman padrão assume que a dinâmica do sistema e os modelos de medição são lineares. No entanto, muitos sistemas do mundo real não são lineares. Para esses casos, são utilizadas variantes como o filtro de Kalman alargado (EKF). O EKF aproxima o sistema não linear linear linearizando-o em torno da estimativa do estado atual em cada passo de tempo. Embora poderosa, essa linearização introduz erros de aproximação, o que significa que o EKF pode não ser tão ótimo ou estável quanto o KF padrão é para problemas puramente lineares. Outras variantes, como o Filtro de Kalman sem Saturação (UKF), oferecem abordagens diferentes para lidar com não-linearidades.
Os princípios da filtragem de Kalman estão incorporados nos algoritmos de seguimento suportados pelo Ultralytics, como o BoT-SORT e o ByteTrack, que podem ser utilizados juntamente com os detectores de objectosYOLO Ultralytics . A estrutura do Ultralytics fornece implementações, como a encontrada em reference/trackers/utils/kalman_filter/
, permitindo uma rastreio de objectos capacidades. Podes gerir e treinar modelos para essas aplicações utilizando ferramentas como Ultralytics HUB.