O Llama 3 da Meta foi lançado recentemente e foi recebido com grande entusiasmo pela comunidade de IA. Vamos saber mais sobre a Llama 3 - os últimos avanços da Meta AI.
Quando reunimos as inovações em inteligência artificial (IA) do primeiro trimestre de 2024, vimos que os LLMs, ou modelos de linguagem de grande dimensão, estavam a ser lançados a torto e a direito por diferentes organizações. Dando continuidade a esta tendência, em 18 de abril de 2024, a Meta lançou o Llama 3, um LLM de código aberto de última geração.
Deves estar a pensar: É apenas mais um LLM. Porque é que a comunidade da IA está tão entusiasmada com ele?
Embora possas afinar modelos como o GPT-3 ou o Gemini para obter respostas personalizadas, estes não oferecem total transparência relativamente ao seu funcionamento interno, como os dados de treino, os parâmetros do modelo ou os algoritmos. Em contraste, o Llama 3 da Meta é mais transparente, com a sua arquitetura e pesos disponíveis para download. Para a comunidade de IA, isto significa maior liberdade para experimentar.
Neste artigo, vamos aprender o que o Llama 3 pode fazer, como surgiu e o seu impacto no campo da IA. Vamos ao que interessa!
Antes de nos debruçarmos sobre a Llama 3, vamos rever as suas versões anteriores.
A Meta lançou o Llama 1 em fevereiro de 2023, com quatro variantes e parâmetros que variam entre 7 mil milhões e 64 mil milhões. Na aprendizagem automática, os "parâmetros" referem-se aos elementos do modelo que são aprendidos a partir dos dados de treino. Devido ao seu número mais reduzido de parâmetros, a Llama 1 teve por vezes dificuldades em compreender as nuances e deu respostas inconsistentes.
Pouco depois da Llama 1, a Meta lançou a Llama 2 em julho de 2023. Foi treinado com 2 triliões de tokens. Um token representa um pedaço de texto, como uma palavra ou parte de uma palavra, utilizado como unidade básica de dados para processamento no modelo. O modelo também incluiu melhorias como uma janela de contexto duplicada de 4096 tokens para compreender passagens mais longas e mais de 1 milhão de anotações humanas para diminuir os erros. Apesar destas melhorias, o Llama 2 continuava a necessitar de muito poder de computação, algo que Meta pretendia corrigir com o Lama 3.
O Llama 3 vem com quatro variantes que foram treinadas contra uns impressionantes 15 triliões de tokens. Mais de 5% desses dados de treino (cerca de 800 milhões de tokens) representam dados em 30 línguas diferentes. Todas as variantes da Llama 3 podem ser executadas em vários tipos de hardware de consumo e têm um comprimento de contexto de 8k tokens.
As variantes do modelo estão disponíveis em dois tamanhos: 8B e 70B, indicando 8 mil milhões e 70 mil milhões de parâmetros, respetivamente. Existem também duas versões, base e instruct. "Base" refere-se à versão padrão pré-treinada. "Instruct" é uma versão optimizada para aplicações ou domínios específicos através de formação adicional em dados relevantes.
Estas são as variantes do modelo Llama 3:
Tal como acontece com qualquer outro avanço da Meta IA, foram implementadas medidas rigorosas de controlo de qualidade para manter a integridade dos dados e minimizar os enviesamentos durante o desenvolvimento do Llama 3. Assim, o produto final é um modelo poderoso que foi criado de forma responsável.
A arquitetura do modelo Llama 3 destaca-se pelo seu enfoque na eficiência e desempenho em tarefas de processamento de linguagem natural. Construída sobre uma estrutura baseada no Transformer, enfatiza a eficiência computacional, especialmente durante a geração de texto, utilizando uma arquitetura apenas de descodificador.
O modelo gera resultados com base apenas no contexto anterior, sem um codificador para codificar as entradas, o que o torna muito mais rápido.
Os modelos Llama 3 incluem um tokenizador com um vocabulário de 128K tokens. Um vocabulário maior significa que os modelos podem entender e processar melhor o texto. Além disso, os modelos agora usam a atenção de consulta agrupada (GQA) para melhorar a eficiência da inferência. A GQA é uma técnica que podes considerar como um holofote que ajuda os modelos a concentrarem-se em partes relevantes dos dados de entrada para gerar respostas mais rápidas e mais precisas.
Aqui tens mais alguns detalhes interessantes sobre a arquitetura do modelo da Llama 3:
Para treinar os maiores modelos Llama 3, foram combinados três tipos de paralelização: paralelização de dados, paralelização de modelos e paralelização de pipeline.
A paralelização de dados divide os dados de treinamento em várias GPUs, enquanto a paralelização de modelos divide a arquitetura do modelo para usar o poder computacional de cada GPU. A paralelização de pipeline divide o processo de treino em fases sequenciais, optimizando a computação e a comunicação.
A implementação mais eficiente alcançou uma utilização computacional notável, excedendo 400 TFLOPS por GPU quando treinada em 16.000 GPUs em simultâneo. Essas execuções de treinamento foram realizadas em dois clusters GPU personalizados, cada um com 24.000 GPUs. Esta infraestrutura computacional substancial forneceu a potência necessária para treinar os modelos Llama 3 em grande escala de forma eficiente.
Para maximizar o tempo de atividade do GPU , foi desenvolvida uma nova pilha de formação avançada, automatizando a deteção, o tratamento e a manutenção de erros. A fiabilidade do hardware e os mecanismos de deteção foram muito melhorados para mitigar os riscos de corrupção silenciosa de dados. Além disso, foram desenvolvidos novos sistemas de armazenamento escaláveis para reduzir as despesas de checkpointing e rollback.
Estas melhorias conduziram a um tempo de treino global com uma eficácia superior a 95%. Combinadas, aumentaram a eficiência do treino da Llama 3 em cerca de três vezes em comparação com a Llama 2. Esta eficiência não é apenas impressionante; está a abrir novas possibilidades para os métodos de treino de IA.
Como a Llama 3 é de código aberto, os investigadores e estudantes podem estudar o seu código, realizar experiências e participar em discussões sobre preocupações éticas e preconceitos. No entanto, a Llama 3 não é apenas para o público académico. Também está a fazer ondas em aplicações práticas. Está a tornar-se a espinha dorsal da interface de conversação Meta AI, integrando-se perfeitamente em plataformas como o Facebook, Instagram, WhatsApp e Messenger. Com a Meta AI, os utilizadores podem participar em conversas em linguagem natural, aceder a recomendações personalizadas, executar tarefas e ligar-se facilmente a outras pessoas.
A Llama 3 tem um desempenho excecional em vários testes de referência chave que avaliam a compreensão de linguagem complexa e as capacidades de raciocínio. Aqui estão alguns dos benchmarks que testam vários aspectos das capacidades da Llama 3:
Os excelentes resultados do Llama 3 nestes testes distinguem-no claramente de concorrentes como o Gemma 7B da Google, o Mistral 7B da Mistral e o Claude 3 Sonnet da Anthropic. De acordo com as estatísticas publicadas, em particular o modelo 70B, a Llama 3 supera estes modelos em todos os testes de referência acima referidos.
A Meta está a expandir o alcance da Llama 3, disponibilizando-a numa variedade de plataformas, tanto para os utilizadores em geral como para os programadores. Para os utilizadores comuns, a Llama 3 está integrada nas plataformas populares da Meta, como o WhatsApp, o Instagram, o Facebook e o Messenger. Os utilizadores podem aceder a funcionalidades avançadas como a pesquisa em tempo real e a capacidade de gerar conteúdos criativos diretamente nestas aplicações.
A Llama 3 está também a ser incorporada em tecnologias portáteis como os óculos inteligentes Ray-Ban Meta e os auscultadores Meta Quest VR para experiências interactivas.
A Llama 3 está disponível numa variedade de plataformas para programadores, incluindo AWS, Databricks, Google Cloud, Hugging Face, Kaggle, IBM WatsonX, Microsoft Azure, NVIDIA NIM e Snowflake. Também podes aceder a estes modelos diretamente a partir do Meta. A vasta gama de opções facilita aos programadores a integração destas capacidades avançadas de modelos de IA nos seus projectos, quer prefiram trabalhar diretamente com o Meta ou através de outras plataformas populares.
Os avanços da aprendizagem automática continuam a transformar a forma como interagimos com a tecnologia todos os dias. O Llama 3 da Meta mostra que os LLMs já não se limitam a gerar texto. Os LLMs estão a resolver problemas complexos e a lidar com várias línguas. No geral, a Llama 3 está a tornar a IA mais adaptável e acessível do que nunca. Olhando para o futuro, as actualizações planeadas para a Llama 3 prometem ainda mais capacidades, como lidar com vários modelos e compreender contextos maiores.
Consulta o nosso repositório GitHub e junta-te à nossa comunidade para saberes mais sobre IA. Visita as nossas páginas de soluções para veres como a IA está a ser aplicada em áreas como o fabrico e a agricultura.
Começa a tua viagem com o futuro da aprendizagem automática